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A note on competition in the bioreactor with toxin
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In this paper, we investigate a model with yields: γ1 = A1 + B1Sm and γ2 = A2 +
B2Sn , for the competition in the bioreactor of two competitors for a single nutrient,
in which one of the competitors produces toxin against its opponent. The existence of
limit cycles in the 3-D system is obtained by using a Hopf bifurcation.
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1. Introduction

Modeling microbial growth is an interesting topic in mathematical chemistry
and mathematical biology [1]. Most of the models in bioreactors assume that no
toxin produced by one organism to inhibit the other. However, in nature micro-
organisms often produce inhibitors against their rivals. Thus, considering the
effect of anti-competitor toxin in modeling bioreactors is necessary [2–7]. In the
earlier years, models of bioreactor assumed that yield coefficients are constants
[1]. Later, it was discovered that constant yields failed to describe the nonlin-
ear phenomena such as oscillation, time-delay and chaos in the reactions. Many
authors tried to modify the model, in which one is using variable yields instead
of constant yields [8–14]. Recently, a model with general quadric yields of com-
petition in the bioreactor of two competitors for a single nutrient, where one of
the competitors produces toxin against its opponent is studied [3]. In this note,
we use a quite similar idea to report the results for the competition model with
variable yields: γ1 = A1 + B1Sm and γ2 = A2 + B2Sn, where m, n are non-neg-
ative integers. In addition, by using a 3-D Hopf bifurcation, we prove the exis-
tence of limit cycles. Models with variable yields are studied in many references
(see [8–10,13,14], for instance).
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The existence of periodic solutions of the n−dimensional differential system
for n � 3 is interesting in both theory and applications. This is because that the
situation of n � 3 is much complicated than the one of n = 2 due to the power-
ful tools in the plane system like Poincare–Bendixson theorem cannot be applied
directly to the cases of n � 3. Some counterexamples can be found in D’Heed-
ene [15] and Schweitzer [16]. Thus, any results regarding the limit cycles in 3+-D
systems are welcomed in the study of nonlinear dynamic systems.

2. Main results

The model considered in this paper is

S′ = 1 − S − x

A1 + B1Sm

m1S

a1 + S
− y

A2 + B2Sn

m2S

a2 + S
,

x ′ = x

(
m1S

a1 + S
− 1 − y

kγ

1 − k

)
, (1)

y′ = y

(
(1 − k)

m2S

a2 + S
− 1

)
,

where, S(t) denote the concentration of nutrient in the bioreactor, x(t), the con-
centration of the toxin sensitive microorganism, y(t), the toxin-producing organ-
ism, mi , the maximal growth rate, ai , the Michaelis–Menten constant, i = 1, 2;
A1 + B1Sm and A2 + B2Sn, are the yields, where m, n are non-negative integers,
and Ai > 0, Bi � 0, i = 1, 2. The intersection between the toxin and the sensi-
tive microorganism is taken to be of mass action form: −γ x , where γ is a non-
negative parameter. The constant k represents the fraction of potential growth
devoted to produce the toxin; k = 0 means a system asymptotic to the standard
bioreactor and k = 1 represents all effects devoted to producing the toxin and
results in no growth and thus extinction. Usually, it is assumed that 0 < k < 1.
One can find the idea how to derive the model in [7].

Denote

λ1 = a1

m1 − 1
, λ2 = a2

(1 − k)m2 − 1
, λ̂ = ϕ−1(0), (2)

where

ϕ(λ) = m1λ

a1 + λ
− 1 − kγ (1 − λ)(A2 + B2Sn), (3)

where ϕ(λ) is an increasing function and there exists a λ̂ such that ϕ(λ̂) = 0,
λ̂ ∈ (λ1, 1).
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System (1) has four possible equilibrium points:

E0(1, 0, 0), E1
(
λ1, (1 − λ1)(A1 + B1λ

m
1 ), 0

)
, if λ1 < 1,

E2
(
λ2, 0, (1 − k)(1 − λ2)(A2 + B2λ

n
2)

)
, if λ2 < 1, and

E3
(
λ2, x∗, y∗) , if λ1 < λ2 < λ̂,

where,

x∗ = (A1 + B1λ
m
2 )(a1 + λ2)

m1λ2

(
1 − λ2 − 1

kγ (A2 + B2λ
n
2)

(
m1λ2

a1 + λ2
− 1

))
,

y∗ = 1 − k

kγ

(
m1λ2

a1 + λ2
− 1

)
(both are positive). (4)

Denote

R1 ≡
(1 − λ1)

(
mλm−1

1 (a1 + λ1)
2 − λm

1 m1a1

)
− λm

1 (a1 + λ1)
2

(a1 + λ1)
2 + m1a1(1 − λ1)

,

R2 ≡
(1 − k)(1 − λ2)

(
nλn−1

2 (a2 + λ2)
2 − λn

2m2a2

)
− λn

2(a2 + λ2)
2

(a2 + λ2)
2 + m2a2(1 − k)(1 − λ2)

. (5)

It is easy to prove the following theorems (see, e.g., [3,7]).

Theorem 1. (i) E0 always exists. It is locally asymptotically stable if λi > 1, i =
1, 2, and unstable if either inequality is reversed. (ii) E1 exists if λ1 < 1 with a
2-D stable manifold: y = 0; and it is locally asymptotically stable if λ1 < λ2 and
A1/B1 > R1, and unstable if either inequality is reversed. (iii) E2 exists if λ2 < 1.
If it exists, it has a 2-D stable manifold: x = 0, and it is locally asymptotically
stable if λ2 < λ̂, and A2/B2 > R2, and unstable if either inequality is reversed.
(iv) E3 exists if λ1 < λ2 < λ̂, and if it exists it is always unstable with a 2-D
stable manifold.

Theorem 2. (i) If λ1 < λ2 and A1/B1 > R1, then E1 is globally asymptotically
stable. (ii) If λ2 < λ̂ and A2/B2 > R2, then E2 is globally asymptotically stable.

Like in the case of the variable yields γi = Ai + Bi S + Ci S2, i = 1, 2 ([3]), by
the standpoint of the operation, the reactor is not functioning as desired if E0 or
E1 is globally asymptotically stable, in which limt→∞ y(t) = 0. Conversely, if E2
is asymptotically stable, y survives and it is manufacturing the desired product.
Therefore, conditions that guarantee the existence of an oscillation or a limit cycle
around the equilibrium point E2 are essential to the production of the bioreactor.

Following the argument of theorem 5 ([7]), we have
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Theorem 3. There is a positive invariant set of system (1) in the positive octant,
which takes the form

Ω+ = {(S, x, y)| 0 � S � L − x − y, 0 � x � (1 − λ1)(A1 + B1λ
m
1 ) + ε0,

0 � y � (1 − k)(1 − λ2)(A2 + B2λ
n
2) + ε0, ε0 = const. L >> 1}.

The following theorem is for the global stability of E2, and in the proof a
generalized Liapunov function and the LaSalle corollary are used (see [3,7,17]).

Theorem 4. If λ2 < λ1, and assume

B2m2(λ2 + λ2
2 + · · · + λn

2)
(
(1 − k)(1 − λ2)(A2 + B2λ

n
2) + ε0

)
− A2a2(A2 + B2λ

n
2) � 0, (6)

then the equilibrium E2 is globally asymptotically stable.

Proof. Let

V (S, x, y) =
S∫

λ2

η − λ2

η
dη + c1

y∫
ŷ

η − ŷ

η
dη + c2x,

where c1, c2 are determined later, and ŷ = (1 − k)(1 − λ2)(A2 + B2λ
n
2).

Then

V ′ = S − λ2

S

(
1 − S − x

A1 + B1Sm

m1S

a1 + S
− y

A2 + B2λ
n
2

m2S

a2 + S

)

+c1
y − ŷ

y
y

(
(1 − k)

m2S

a2 + S
− 1

)
+ c2x

(
m1S

a1 + S
− 1 − y

kγ

1 − k

)
.

It follows that

V ′ =
(

S − λ2

S
(1 − S) − c1 ŷ

(
(1 − k)

m2S

a2 + S
− 1

))

+
(

− S − λ2

S

y

A2 + B2λ
n
2

m2S

a2 + S
+ c1y

(
(1 − k)

m2S

a2 + S
− 1

))

− c2
xykγ

1 − k
+ c2x

(
m1λ2

a1 + λ2
− 1

)

+x

(
c2

(
m1S

a1 + S
− m1λ2

a1 + λ2

)
− S − λ2

S

1
A1 + B1Sm

m1S

a1 + S

)

≡ V1 + V2 + V3 + V4 + V5.
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Note that

(1 − k)
m2S

a2 + S
− 1 = ((1 − k)m2 − 1) (S − λ2)

a2 + S
, and

1 − k = a2 + λ2

m2λ2
.

We can determine the sign of each part of V ′as follows:
First choose c1 = m2

(A2+B2λ
n
2)((1−k)m2−1)

. Then it follows that

V1 = S − λ2

S
(1 − S) − c1 ŷ

((1 − k)m2 − 1)(S − λ2)

a2 + S

= (S − λ2)

(
1 − S

S
− m2(1 − k)

1 − λ2

a2 + S

)

= (S − λ2)

(
1 − S

S
− m2

a2 + λ2

m2λ2

1 − λ2

a2 + S

)

= −(S − λ2)
2 a2 + Sλ2

λ2S(a2 + S)
� 0.

Therefore

V2 = − S − λ2

S

y

A2 + B2Sn

m2S

a2 + S
+ c1y

(
(1 − k)

m2S

a2 + S
− 1

)

= S − λ2

S

y

A2 + B2Sn

m2S

a2 + S
+ m2

(A2 + B2λ
n
2)((1 − k)m2 − 1)

y
(1 − k)m2 − 1

a2 + S
(S − λ2)

= m2(S − λ2)

a2 + S
y

(
1

A2 + B2λ
n
2

− 1
A2 + B2Sn

)

= ym2(S − λ2)
2

a2 + S

B2(Sn−1 + Sn−2λ2 + · · · + λn−1
2 )

(A2 + B2λ
n
2)(A2 + B2Sn)

.

If

(S − λ2)
2

a2 + S

(
ym2 B2(Sn−1 + Sn−2λ2 + · · · + λn−1

2 )

(A2 + B2Sn)(A2 + B2λ
n
2)

− a2 + Sλ2

λ2S

)
� 0,
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then V1 + V2 � 0. That is,

yS(Sn−1 + Sn−2λ2 + · · · + λn−1
2 )

(A2 + B2Sn)(a2 + Sλ2)
− A2 + B2λ

n
2

B2m2λ2
� 0,

Sn + Sn−1λ2 + · · · + Sλn−1
2 )

(A2 + B2Sn)(a2 + Sλ2)
− A2 + B2λ

n
2

B2m2λ2
(
(1 − k)(1 − λ2)(A2 + B2λ

n
2) + ε0

) � 0.

Therefore, the assumption (6) implies that V1 + V2 � 0.
Moreover, if choose c2 = a1+λ2

a1(A1+B1Sm)
,

V3 = −c2
xykγ

1 − k
� 0

(
since c2 = a1 + λ2

a1(A1 + B1Sm)
� 0

)
,

V4 = c2x

(
m1λ2

a1 + λ2
− 1

)
< 0

(
since c2 = a1 + λ2

a1(A1 + B1Sm)
� 0, λ2 < λ1

)
, and

V5 = x

(
c2

(
m1S

a1 + S
− m1λ2

a1 + λ2

)
− S − λ2

S

1
A1 + B1Sm

m1S

a1 + S

)

= xm1(S − λ2)

a1 + S

(
c2

a1

a1 + λ2
− 1

A1 + B1Sm

)

= 0.

Note that since c2 = a1+λ2
a1(A1+B1Sm)

, which is a function of S, there is one more
term in V ′ created by differentiating, that is

V6 =
(

dc2

dS

)
x =

(
a1 + λ2

a1(A1 + B1Sm)

)′
x

= −(a1 + λ2)B1mSm−1

a1(A1 + B1Sm)2
x

� 0.

Therefore, V ′ < 0.
By the LaSally corollary, all trajectories tend to the largest invariant set in

� = {(S, x, y)|V ′ = 0}. This requires S ≡ λ2 and x ≡ 0.
To make {S|S = λ2} invariant under the condition x = 0, it requires

S′ = 1 − λ2 − y
1

(1 − k)(A2 + B2λ
n
2)

= 0.

This implies y = (1 − k)(1 − λ2)(A2 + B2λ
n
2). Therefore {E2} is the only invariant

set in �. We thus complete the proof of theorem 4.
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Let µ = R2 − A2/B2 be the bifurcation parameter. It is easy to see that sys-
tem (1) can be written in the parameter µ as follows:

S′ = F1(S, x, y, µ),

x ′ = F2(S, x, y, µ),

y′ = F3(S, x, y, µ).

Use the variable change:

S̄ = S − λ2, x̄ = x, ȳ = y − (1 − k)(1 − λ2)(A2 + B2λ
n
2)

system (1) can be written in variables S̄, x̄, ȳ, as

dX

dt
= f (X, µ), (7−µ)

whose Jacobian is denoted as J (S̄, x̄, ȳ).
We then introduce the following lemma ([3, 7, 17]) and the definition of

derived operator, which are need in the proof of theorem 5.

Lemma 1. Let W be an open set in R3, (0, 0, 0) ∈ W , and f : W × (−µ0, µ0) →
R3 be an analytic function on W × (−µ0, µ0), where µ0 is a small positive num-
ber. Denote the Jacobian of f at (X, µ) = ((0, 0, 0), 0) as J ( f (0, 0)). Assume

(i) system (7) − µ has (0, 0, 0) as its equilibrium point for any µ;

(ii) the eigenvalues of J ( f (0, 0)): ±iβ(µ)|µ=0 = ±iβ(0), δ(µ)|µ=0 = δ(0)

satisfy the conditions β(0) > 0, δ(0) < 0.

Then, if (0, 0, 0) is asymptotically stable at µ = 0, unstable on µ > 0, there exists
a sufficiently small µ, µ > 0 such that system (7)−µ has an asymptotically stable
closed orbit surrounding (0, 0, 0).

The proof of lemma 1 is listed in the appendix.

Definition 1. Let f be a vector function from Rn to Rm . f is said to be differ-
entiable at point a ∈ Rn, if there exists a linear operator ℘ : Rn → Rm , such
that

f (a + h) − f (a) = ℘h + o(h) (h ∈ Rn).

Then ℘ is called the derived operator of f (x) at a, denoted as ℘ = D f (a).
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It is easy to see that if f (x) is differentiable at a, then ∂ fi
∂x j

∣∣∣
x=a

exists for
i = 1, 2, . . . , m, j = 1, 2, . . . , n. Note that the derived operator D f (a) is just the
variational matrix: ⎛

⎜⎝
∂ f1
∂x1

. . .
∂ f1
∂xn

. . . . . . . . .
∂ fm
∂x1

. . .
∂ fm
∂xn

⎞
⎟⎠

x=a

of system dX
dt

= f (X, µ).
We now prove the three dimensional Hopf bifurcation theorem for system (1).

Theorem 5. If λ2 < λ1, and (6) holds, then system (1) undergoes a Hopf bifur-
cation at µ = 0, (that is, R2 = A2/B2), and the periodic solution created by the
Hopf bifurcation is asymptotically stable for 0 < R2 − A2/B2 << 1.

Proof. Consider system (7)−µ and its Jacobian at (S̄, x̄, ȳ) = (0, 0, 0)

J ( f (0, 0)) = J (S̄, x̄, ȳ)

∣∣∣∣∣∣∣∣∣∣
(S̄, x̄, ȳ) = (0, 0, 0)

µ = 0

= J (S, x, y)

∣∣∣∣∣∣∣∣∣∣
(S, x, y) = (λ2, 0, (1 − k)(1 − λ2)(A2 + B2λn

2))

R2 = A2/B2

.

Its characteristic equation has the eigenvalues: ±iβ(0) and δ(0), where

β(0) = 1
a2 + λ2

√
(1 − k)(1 − λ2)m2a2 > 0,

δ(0) = ϕ(λ2) < 0 (since λ2 < λ1 < λ̂).

The hypotheses of lemma 1 are satisfied. From theorem 4, it follows that:

(1) The equilibrium of system (1): (0, 0, 0) in the S̄, x̄, ȳ coordinate system,
or (λ2, 0, (1 − k)(1 − λ2)(A2 + B2λ

n
2)) in S, x, y, is globally asymptotically

stable at µ < 0 and µ=0 (even in the case of A2/B2 = R2, see the proof
of theorem 4);

(2) (0, 0, 0) in S̄, x̄, ȳ coordinates, or (λ2, 0, (1 − k)(1 − λ2)(A2 + B2λ
n
2)) in

S, x, y, is unstable if µ > 0 (since A2/B2 < R2 theorem 2-(iii) implies the
instability).

Therefore, system (7)−µ undergoes a Hopf bifurcation at µ = 0, and so
does system (1) at A2/B2 = R2. From lemma 1 it proves, for a sufficient small
µ, µ > 0, system (7)−µ has an asymptotically stable closed orbit surrounding
(0, 0, 0). In other words, for 0 < R2 − A2/B2 << 1, system (1) has an asymp-
totically stable closed orbit surrounding E2(λ2, 0, (1 − k)(1 − λ2)(A2 + B2λ

n
2)).

Theorem 5 is obtained.
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3. Conclusion

The study of the competition in the bioreactor with one organism pro-
ducing toxins has been interesting to many authors [2,9–12]. However, most of
these models are assumed that the yields are constants. The recent paper of the
authors [3] considered a model with general quadric yields of competition in the
bioreactor of two competitors for a single nutrient where one of the competitors
can produce toxin against its opponent. Here, we use the same idea for a similar
model but different and more general variable yields. Under different conditions,
we derived the existence of limit cycles. This implies the competition system with
toxin involved may have at least two limit cycles. Results of this paper and [3]
are not include with each other. Also, in [3], there are some misprints such as in
formula (5) λ1 = a

m1−1 should be replaced by a1
m1−1 ; in formula (14) λ1 should

be λ2, and theorem 4 of [3] needs some modification just like, we have done in
Theorem 4 in section 2.

We would also like to add lemma 1 and its proof in Appendix since the
corollary of center manifold theorem is very useful in studying 3-D bifurcations.
The main idea is based on a Chinese reference [18].

Appendix

Proof of lemma 1. Let O(0, 0, 0) be the origin. By the hypothesis of lemma 1,
for sufficiently small µ > 0, the derived operator of f (X, µ) at X = (0, 0, 0) and
µ = 0 takes the form: D f (O, 0) with the eigenvalues: α(µ) ± iβ(µ) and δ(µ). It
is not difficult to see that α(0) = 0, β(0) > 0, δ(µ) < δ̄ < 0, where δ̄ is some
constant. For any µ, D f (O, µ) = J f (O, µ), which is the variational matrix of
system (7) − µ.

We first assume that D f (O, µ) has the standard form:

D f (O, µ) =
⎛
⎝α(µ) −β(µ) 0

β(µ) α(µ) 0
0 0 δ(µ)

⎞
⎠ . (8)

Consider the 4-D differential equations

ẋ1 = f1(x1, x2, x3, µ),

ẋ2 = f2(x1, x2, x3, µ),

ẋ3 = f3(x1, x2, x3, µ), (9)

µ̇ = f4(x1, x2, x3, µ) ≡ 0.
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For the simplicity, we denote the right-hand side functions of (9) as f (X, µ),
whose derived operator at X = (0, 0, 0), µ = 0 takes the form

D f ((0, 0, 0), 0) =

⎛
⎜⎜⎝

0 −β(0) 0 0
β(0) 0 0 0

0 0 δ(0) 0
0 0 0 0

⎞
⎟⎟⎠ ,

which has the eigenvalues: +iβ(0), −iβ(0), δ(0), and 0.
Let ϕt (X, µ) be a flow of equation (9). It follows that

d
dt

Dϕt (X, µ) = D f (X, µ)
∣∣
(X,µ)=ϕt (X,µ) Dϕt (X, µ).

Since (X, 0) = (O, 0) is an equilibrium of system (9), the matrix satisfies the
following differential equation

d
dt

Dϕt (O, 0) = D f (O, 0) · Dϕt (O, 0). (10)

Note that Dϕ0(O, 0) = I , the identity matrix. Therefore, Dϕt (O, 0) is the
fundamental solution matrix of the linear equation ẋ = D f (O, 0)x . That is

Dϕt (O, 0) = eD f (O,0)t =

⎛
⎜⎜⎝

cos β(0)t − sin β(0)t 0 0
sin β(0)t cos β(0)t 0 0

0 0 eδ(0)t 0
0 0 0 1

⎞
⎟⎟⎠ ,

which implies that Dϕt (O, 0) has eigenvalues e±iβ(0)t , eδ(0)t , and 1. In summary,
for the flow ϕt (X, µ) all the conditions of the center manifold theorem are
satisfied. Let H be the three-dimensional subspace spanned by the eigenvalues
e±iβ(0)t and 1 of Dϕt (O, 0) in the unit circle, then it follows that H is x3 = 0.
By the center manifold theorem, there exists a neighborhood V̄ of the origin
Ō((0, 0, 0), 0), and a three dimensional face M . M is smooth to any degree since
the flow ϕt (X, µ) is analytic, with Ō ∈ M ⊂ V̄ , and M is tangent to H at the
origin. Therefore

(1) if ϕt (X, µ) ∈ V̄ for (X, µ) ∈ M, t > 0, then ϕt (X, µ) ∈ M ;

(2) if ϕnt (X, µ) ∈ V̄ for t > 0 and n = 0, 1, 2, . . ., then the distance between
ϕnt (X, µ) and M tends to zero when n → ∞.

Since M and H are tangent to each other, we can denote the equation of M as
x3 = x3(x1, x2, µ). Let µ0 be sufficiently small, and Mµ0 denote the intersection
of M and the plane µ = µ0. It easy to see that Mµ0 is the 2-D surface x3 =
x3(x1, x2, µ0), and thus we obtain a set of 2-D surfaces Mµ ⊂ R3.

It follows that Mµ has two properties:
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(i) for sufficiently small µ0, the point (x1, x2, x3) = (0, 0, 0) is on Mµ0 , that
is x3(0, 0, µ0)=0. This is because if µ0 is sufficiently small, (0, 0, 0, µ0) ∈
V̄ . Moreover, (0, 0, 0, µ0) is the equilibrium of equation (9). Therefore,
for t > 0, n = 0, 1, 2, . . . , ϕnt (0, 0, 0, µ0) = (0, 0, 0, µ0) ∈ V̄ . The center
manifold theorem implies

lim
n→∞ ϕnt (0, 0, 0, µ0) = (0, 0, 0, µ0) ∈ M,

so x3(0, 0, µ0) = 0 and (0, 0, 0) ∈ Mµ0 ;

(ii) if (X, µ0) ∈ M , then ϕt (X, µ0) ∈ V̄ for t > 0. The center manifold theo-
rem indicates ϕt (X, µ0) ∈ M . Since dµ

dt
= 0, µ remains unchanged while

t varies. Thus for t > 0 ϕt (X, µ0) ∈ Mµ0 . In other words, for sufficiently
small µ, any trajectory of system (7)−µ stays in Mµ if it starts from a
point near the origin (0, 0, 0) ∈ Mµ0 .

Since for any point in Mµ, there is a trajectory of (7)−µ in Mµ, the normal
of Mµ is perpendicular to the vector field of f (X, µ). It follows that the right-
hand side function of the equation x3 = x3(x1, x2, µ) in Mµ satisfies the partial
differential equation

f1(x1, x2, x3, µ)
∂x3

∂x1
+ f2(x1, x2, x3, µ)

∂x3

∂x2
− f3(x1, x2, x3, µ) = 0.

Substituting x3 = x3(x1, x2, µ) into the first two equations of (7)−µ, we obtain
the following 2-D system in R2:

ẋ1 = f1(x1, x2, x3(x1, x2, µ), µ),

ẋ2 = f2(x1, x2, x3(x1, x2, µ), µ). (11−µ)

Note, that the trajectory of (11) − µ is the projection of the trajectory of
(7)-µ in Mµ onto the x1 − x2 plane, and for sufficiently small µ, x3(0, 0, µ) = 0.
Thus, for sufficiently small µ, (0, 0) is an equilibrium of system (11) − µ. The
variational matrix of (11) − µ at (0, 0) is

(
α(µ) −β(µ)

β(µ) α(µ)

)
.

Since α(0) is zero, thus (0, 0) is a center of system (11) − 0.
By the hypothesis of lemma 1, (0, 0, 0) is an asymptotically stable equilib-

rium, we can use a similar argument of the formal series method to the equilib-
rium (0, 0, 0) of system (7) − 0 and derive an integer 2m such that C3 = · · · =
C2m−1 = 0, but C2m < 0. If the central manifold M is smooth enough, for the
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equilibrium (0, 0) of system (11) − 0, there must exist an integer 2m such that
C3 = · · · = C2m−1 = 0, but C2m < 0, and a function Φ(x1, x2) with

dΦ

dt

∣∣∣∣
(11)−0

= C2m(x2
1 + x2

2)m

+(terms of x1, x2 with powers of 2m + 1 or higher).

Therefore, (0, 0) is a stable focus of system (11) − 0.
Since the hypothesis of the lemma assumes that (0, 0, 0) is an unstable equi-

librium for µ > 0, µ is sufficiently small, α(µ) cannot be negative. If α(µ) >

0, (0, 0) is an unstable equilibrium of system (11) − µ; if α(µ) = 0, following
the same argument of the formal series method, there exists an integer k(µ) such
that C3 = · · · = Ck(µ)−1 = 0, but Ck(µ) > 0. Let k0, a positive integer, be an
upper bound of k(µ). The existence of k0 is ensured by the fact that, for µ0 and
µ, sufficiently close to µ0, k(µ) � k(µ0). Suppose M is smooth enough (continu-
ously differentiable up to k0+1’s time). When we use the formal series method to
the equilibrium (0, 0) of (11)−µ, we have C3 = · · · = Ck(µ)−1 = 0, but Ck(µ) > 0.
Thus, the origin (0, 0) is an unstable equilibrium of system (11) − µ.

In order to prove that there exists a stable limit cycle around (0, 0) of sys-
tem (11) − µ for sufficiently small µ > 0, we use the linear transform

x1 = au + bv,

x2 = cu + dv

and transfer system (11) − 0 to

u̇ = −v + U2(u, v) ≡ U (u, v, 0),

v̇ = u + V2(u, v) ≡ V (u, v, 0) (12–0)

and system (11) − µ to

u̇ = U (u, v, µ),

v̇ = V (u, v, µ). (12−µ)

Since (0, 0) is a stable central focus of system (11) − 0, and it is also a sta-
ble central focus of system (12)−0. By the formal series method for the center,
there exists a function

F(u, v) = u2 + v2 + F3(u, v) + · · · + F2k0(u, v),

such that along with the trajectory of system (12)−0,

dF

dt

∣∣∣∣
(12)−0

= −C0(u
2 + v2)k0 + (terms of u, v with power 2k0 + 1 or higher),

where C0 is a positive constant.
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Rewrite the above equation as

dF

dt

∣∣∣∣
(12)−0

= −C0

2
(u2 + v2)k0 + (u2 + v2)k0

(
−C0

2
+ o

(√
u2 + v2

))
. (13)

It follows that there exists an r0 > 0, such that for u2 + v2 � r2
0 , −C0

2 +
o

(√
u2 + v2

)
< 0. Let F(u, v) = a0 be an isocline of the function F(u, v) in

the region of u2 + v2 � r2
0 , and let u2 + v2 = r2

1 be a circle inside the isocline.

We estimate dF
dt

∣∣∣
(12)−µ

in the annular region r2
1 � u2 + v2 � r2

0 as follows.

Since

dF

dt

∣∣∣∣
(12)−µ

= dF

dt

∣∣∣∣
(12)−0

+
(

dF

dt

∣∣∣∣
(12)−µ

− dF

dt

∣∣∣∣
(12)−0

)
(14)

by (13), in the annular region r2
1 � u2 + v2 � r2

0 , the first term of the right-hand
side of (14) satisfies the following inequality

dF

dt

∣∣∣∣
(12)−0

< −C0

2
r2k

1 . (15)

For the second-term of the right-hand side of (14),

dF

dt

∣∣∣∣
(12)−µ

− dF

dt

∣∣∣∣
(12)−0

= ∂ F

∂u
(U (u, v, µ) − U (u, v, 0)) + ∂ F

∂v
(V (u, v, µ)

−V (u, v, 0)) .

Since ∂ F
∂u , ∂ F

∂v
are bounded, U, V are continuous with respect to µ, uniformly

continuous to u and v in the region r2
1 � u2 + v2 � r2

0 , there exists a sufficiently
small µ0 > 0 such that for 0 � µ � µ0, the second term of the right-hand side
of (14) is less than C0

2 r2k
1 . Thus, in the annular region r2

1 � u2 + v2 � r2
0 , for

0 � µ � µ0,

dF

dt

∣∣∣∣
(12)−µ

< 0.

Therefore, when the parameter µ satisfies 0 � µ � µ0, the trajectory of (12) − µ

crosses the curve F(u, v) = a0 from the outside to inside. For µ > 0, only unsta-
ble focus can be in the region Ω, where Ω is the region bounded by the curve
F(u, v) = a0. The Poincare–Bendixson theorem implies that there exists at least a
limit cycle which is stable in Ω. Moreover, when the boundary of Ω : F(x1, x2) =
a0 shrinks to the origin, r1 → 0, µ0 → 0. For sufficiently small µ, there exists a
stable limit cycle around the origin of system (11)−µ. Assume the equations of
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the limit cycle are x1 = φ(t, µ), x2ψ(t, µ), then, system (7) − µ has the following
asymptotically stable closed orbit in the surface Mµ:

Γµ : x1 = φ(t, µ), x2 = ψ(t, µ), x3 = χ(t, µ) ≡ x3 (φ(t, µ), ψ(t, µ), µ) ,

which has the same period as the one in system (11) − µ.
We would like to point it out that the asymptotically stable closed orbit in

the surface Mµ is also asymptotically stable is the whole space. To that purpose,
we need to check the three eigenvalues of the image DϕTµ(X̄ , µ), where X̄ ∈
Γµ, and Tµ is the period of Γµ. Since when µ is sufficiently small, the distance
between the images DϕTµ(X̄ , µ) and DϕT0(O, 0) could be as small as possible,
thus the image DϕTµ(X̄ , µ) has an eigenvalue whose eigenvector is not tangent
to Mµ, which could be as close as possible to the eigenvalue e2πδ(0)/β(0) (< 1)

of DϕT0(O, 0). Moreover, for the other two eigenvalues of DϕTµ(X̄ , µ), the one
along with the closed orbit is always 1, and the other must be � 1 since Γµ

is asymptotically stable in Mµ. If it is less than 1, then the image DϕTµ(X̄ , µ)

has two eigenvalues whose absolute value is less than 1. (In general, in Rn if
there exists a point P in a close orbit γ such that the corresponding linear image
Dϕ(P) has n−1 eigenvalues whose absolute value is less than 1, then γ is asymp-
totically stable.)

If the eigenvalue is 1, then Γµ is the limit cycle with a zero index, a crit-
ical case, which can be analyzed by the local attraction property of the center
manifold to show the asymptotical stability of Γµ in the space.

Finally, we would like to mention if the derived operator D f (O, ℘) = ℘(µ)

on the right-hand side function of (7)−µ at the origin does not have the stan-
dard form (8), make a coordinate change by using the eigenvectors. Since the
right-hand side function of (7)−µ has a parameter µ, in order to make sure that
the function is still analytic of X and µ, the eigenvectors need to be the func-
tions of µ. In fact, suppose ξk is the corresponding eigenvector of the kth eigen-
value ak of the matrix ℘. By the Cauchy formula of the matrix function, we can
write the projecting operator Pk onto the kth eigenvector ξk as

Pk = 1
2π i

∮
Γk

(λI − ℘)−1dλ,

where, Γk is a closed curve surrounding ak only. (Note, that Γk does not sur-
round a j,( j �= k)). Therefore, if ℘ = ℘(µ) is an analytic function of µ, so are
its eigenvectors. We thus complete the proof of lemma 1.

References

[1] H.L. Smith and P. Waltman, The Theory of the Chemostat (Cambridge University, Cambridge,
UK, 1995).

[2] L. Chao and B.R. Levin, Structured habitats and the evolution of anti-competitor toxins in
bacteria, Proc. Nat. Acad. Sci. 75 (1981) 6324–6328.



X. Huang and L. Zhu / Competition in the bioreactor with toxin 659

[3] X.C. Huang, Y.M. Wang, and L.M. Zhu, Competition in the bioreactor with general quadratic
yields when one competitor produces a toxin, J. Math. Chem. 39 (2006) 281–294.

[4] S.B. Hsu and P. Waltman, Analysis of a model of two competitors in a chemostat with an
external inhibitor, SIAM J. Appl. Math. 52 (1992) 528–540.

[5] S.B. Hsu and T.K. Luo, Global analysis of a model of plasmid-bearing plasmid-free competi-
tion in a chemostat with inhibition, J. Math. Biol. 34 (1995) 41–76.

[6] S.B. Hsu and P. Waltman, Competition between plasmid-bearing and plasmid-free organisms
in selective media, Chem. Eng. Sci. 52 (1997) 23–35.

[7] S.B. Hsu and P. Waltman, Competition in the chemostat when one competitor produces toxin,
Jpn J. Indust. Appl. Math. 15 (1998) 471–490.

[8] J. Arino, S.S. Pilyugin, and G.K. Wolkowicz, Considerations on yield, nutrient uptake, cellular,
and competition in chemostat models, Can. Appl. Math. Q. 11(2) (2003) 107–142.

[9] P.S. Crooke, C.-J. Wei, and R.D. Tanner, The effect of the specific growth rate and yield expres-
sions on the existence of oscillatory behavior of a continuous fermentation model, Chem. Eng.
Commun. 6 (1980) 333–339.

[10] P.S. Crooke and R.D. Tanner, Hopf bifurcations for a variable yield continuous fermentation
model, Int. J. Eng. Sci. 20 (1982) 439–443.

[11] X.C. Huang, Limit cycles in a continuous fermentation model, J. Math. Chem. 5 (1990)
287–296.

[12] X.C. Huang and L.M. Zhu, A three dimensional chemostat with quadratic yields, J. Math.
Chem. 38(4) (2005) 623–636.

[13] L.M. Zhu and X.C. Huang, Relative positions of limit cycles in the continuous culture vessel
with variable yield, J. Math. Chem. 38(2) (2005) 119–128.

[14] S.S. Pilyugin and P. Waltman, Multiple limit cycles in the chemostat with variable yield, Math.
Biosci. 182 (2003) 151–166.

[15] R.N. D’Heedene, A third-order autonomous differential equation with almost periodic solu-
tions, J. Math. Anal. Appl. 3 (1961) 344–350.

[16] P.A. Schweitzer, Counterexample to the Serfert conjecture and opening closed leaves of folia-
tions, Am. Math. 100(2) (1974) 386–400.

[17] G.S.K. Wolkowicz and Z. Lu, Global dynamics of a mathematical model of competition in
the chemostat: general response functions and differential death rates, SIAM J. Appl. Math.
32 (1992) 222–233.

[18] J. Zhang, The Geometric Theory and Bifurcation Problem of Ordinary Differential Equation
(Peking University press, Beijing, 1987).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


